DNA Polymerase θ: A Unique Multifunctional End-Joining Machine
نویسندگان
چکیده
منابع مشابه
DNA Polymerase θ: A Unique Multifunctional End-Joining Machine
The gene encoding DNA polymerase θ (Polθ) was discovered over ten years ago as having a role in suppressing genome instability in mammalian cells. Studies have now clearly documented an essential function for this unique A-family polymerase in the double-strand break (DSB) repair pathway alternative end-joining (alt-EJ), also known as microhomology-mediated end-joining (MMEJ), in metazoans. Bio...
متن کاملDNA polymerase beta participates in DNA End-joining
DNA double strand breaks (DSBs) are one of the most deleterious lesions and if left unrepaired, they lead to cell death, genomic instability and carcinogenesis. Cells combat DSBs by two pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ), wherein the two DNA ends are re-joined. Recently a back-up NHEJ pathway has been reported and is referred to as alternative NHEJ (aN...
متن کاملPolymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining
DNA polymerase θ (Polθ) promotes insertion mutations during alternative end-joining (alt-EJ) by an unknown mechanism. Here, we discover that mammalian Polθ transfers nucleotides to the 3' terminus of DNA during alt-EJ in vitro and in vivo by oscillating between three different modes of terminal transferase activity: non-templated extension, templated extension in cis, and templated extension in...
متن کاملRNA Polymerase I: A Multifunctional Molecular Machine
In this issue, Kuhn et al. (2007) report the complete structure of the 14-subunit yeast RNA polymerase (Pol) I enzyme at 12 A resolution using cryo-electron microscopy (cryo-EM). Their study reveals that three subunits of Pol I perform functions in transcription elongation that are outsourced to the transcription factors TFIIF and TFIIS in the analogous Pol II transcription system.
متن کامل[Non-homologous DNA end joining].
DNA double strand breaks (DSB) are the most serious form of DNA damage. Repair of DSBs is important to prevent chromosomal fragmentation, translocations and deletions. Non-homologous end joining (NHEJ) is one of three major pathways for the repair of DSBs in human cells. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genes
سال: 2016
ISSN: 2073-4425
DOI: 10.3390/genes7090067